will be the short question and answer section at the end of each case. For students desiring a more in-depth review, the analysis section of each case provides a great and more detailed overview. An extra index organized by disorder name in the back also allows the reader to focus on particular aspects of internal medicine. Details such as this make it obvious that the authors have tried to cater to the varying needs of their readers, and the vast majority of readers should be pleased with the results. The flexibility afforded by Case Files' organization makes this book highly appropriate for both the student looking for an overview of internal medicine toward the beginning of study and the student wanting a quick review of the subject prior to the shelf-exam or USMLE Step 2.

The strengths of this book are its inclusion and comprehensive discussion of a broad range of internal medicine clinical cases and its flexible format allowing readers to tailor the text around their study needs. While the book is generally well-written, readers looking for a book they can quickly read cover-to-cover may find this book tiring or monotonous. But certainly this book does not aim to be read as a textbook, and it may not be surprising that it truly shines when used to review clusters of several cases instead of the entire text.

Overall, Case Files: Internal Medicine will serve as either a solid introductory text or an excellent review text for any medical student studying internal medicine. Its concise format should help make internal medicine an easier case to crack.

Veena Rao
Yale University School of Medicine


Cell Cycle: Principles of Control is a comprehensive text that fluidly integrates the vast volume of information that has been compiled on the cell cycle and serves as a foundation for understanding the complex mechanisms of cell reproduction. The book’s overview succinctly and efficiently introduces the reader to the basics of cell cycle division. The first part of the book
presents the key players involved in the cell cycle, delving into the mechanism of the cell-cycle control mechanism. A significant emphasis is placed on mitosis, since this process has been well studied by cytologists over the past 100 years. The last three chapters focus on the regulation of the cell cycle, as it relates to dynamic signaling through normal cell cycle progression, DNA damage, and cancer. This last section represents the true integration of cell cycle events with clinically relevant issues in molecular medicine, which is the salient reason for writing the text. The concepts in each successive chapter build upon one another, although the weak transitions between topics are a minor shortcoming.

Students who already have been exposed to concepts in cell cycle control would benefit most from this text. As the overview moves very quickly through some of the key players involved, it is clearly designed for an upper level seminar course in molecular biology at the undergraduate or graduate school levels. The text is also a good reference for professionals working in the field. It provides relevant and updated references on the field’s progress, which conveniently appear at the bottom page of where they are listed. The definitions of words that may be unfamiliar to the reader also appear on the bottom of the page. There are also resources online, which provide up-to-date information and serve as a teaching tool.

Building upon the fundamentals in the field, Morgan succeeds in integrating molecular mechanisms involved in the cell cycle with current biological questions. This is especially true in the discussion of the role of the cell cycle in the two final topics covered in the text: DNA damage response and cancer.

Overall, *Cell Cycle: Principles of Control* is a good resource text. Its strengths lie in its ability to utilize multiple organisms to indicate that cell cycle regulation is at least partially conserved in these different species, to introduce the main analytical tools used in the field, and to relate this “basic science” topic to clinically relevant issues. As molecular medicine is increasingly becoming part of the medical school education, this resourceful text demonstrates a logical and natural progression from lab bench to bedside.

Meredith E. Crosby, Ph.D.
Yale University School of Medicine
Department of Therapeutic Radiology
The Cell Cycle is an account of the mechanisms that control cell division, beginning with a description of the phases and main events of the cell cycle and the main model organisms in cell-cycle analysis, including Xenopus, Drosophila, and yeasts. Later chapters focus on the molecules and mechanisms of the cell-cycle control system, including the cyclin-dependent kinase fa. The Cell Cycle is an account of the mechanisms that control cell division, beginning with a description of the phases and main events of the cell cycle and the main model organisms in cell-cycle analysis, including Xenopus, cell-cycle control mechanism. A significant emphasis is placed on mitosis, since this.

Cell cycle machinery is managed by a highly ordered set of events that lead to the proper division and duplication of the cell (Crosby, 2007). Results from the flow cytometry analysis of the relative DNA content of neuronal cells exposed to O-ION showed that the normal progression of SH-SY5Y cell cycle was impaired after nanoparticle exposure, and this was particularly notable after 24 h treatment in serum-free medium. Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells. Cell cycle checkpoints are control mechanisms in eukaryotic cells which ensure proper division of the cell. Each checkpoint serves as a potential point along the cell cycle, during which the conditions of the cell are assessed, with progression through the various phases of the cell cycle occurring when favorable conditions are met. Currently, there are three known checkpoints: the G1 checkpoint, also known as the restriction or start checkpoint or (Major Checkpoint); the G2/M checkpoint; and the